首页> 外文OA文献 >Spectral band selection for urban material classification using hyperspectral libraries
【2h】

Spectral band selection for urban material classification using hyperspectral libraries

机译:使用高光谱库为城市物质分类选择光谱带

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In urban areas, information concerning very high resolution land cover and especially material maps are necessary for several city modelling or monitoring applications. That is to say, knowledge concerning the roofing materials or the different kinds of ground areas is required. Airborne remote sensing techniques appear to be convenient for providing such information at a large scale. However, results obtained using most traditional processing methods based on usual red-green-blue-near infrared multispectral images remain limited for such applications. A possible way to improve classification results is to enhance the imagery spectral resolution using superspectral or hyperspectral sensors. In this study, it is intended to design a superspectral sensor dedicated to urban materials classification and this work particularly focused on the selection of the optimal spectral band subsets for such sensor. First, reflectance spectral signatures of urban materials were collected from 7 spectral libraires. Then, spectral optimization was performed using this data set. The band selection workflow included two steps, optimising first the number of spectral bands using an incremental method and then examining several possible optimised band subsets using a stochastic algorithm. The same wrapper relevance criterion relying on a confidence measure of Random Forests classifier was used at both steps. To cope with the limited number of available spectra for several classes, additional synthetic spectra were generated from the collection of reference spectra: intra-class variability was simulated by multiplying reference spectra by a random coefficient. At the end, selected band subsets were evaluated considering the classification quality reached using a rbf svm classifier. It was confirmed that a limited band subset was sufficient to classify common urban materials. The important contribution of bands from the Short Wave Infra-Red (SWIR) spectral domain (1000 - 2400 nm) to material classification was also shown.
机译:在城市地区,有关高分辨率土地覆盖的信息,尤其是材料地图,对于一些城市建模或监视应用是必不可少的。也就是说,需要有关屋顶材料或不同种类的地面区域的知识。机载遥感技术似乎很方便大规模提供此类信息。然而,使用基于常规的红-绿-蓝-近红外多光谱图像的大多数传统处理方法所获得的结果对于这样的应用仍然是有限的。改善分类结果的一种可能方法是使用超光谱或高光谱传感器来增强图像光谱分辨率。在这项研究中,打算设计一种专门用于城市材料分类的超光谱传感器,这项工作特别侧重于为这种传感器选择最佳光谱带子集。首先,从7个光谱库收集了城市材料的反射光谱特征。然后,使用此数据集执行光谱优化。频带选择工作流程包括两个步骤,首先使用增量方法优化频谱带的数量,然后使用随机算法检查几个可能的优化频带子集。在两个步骤中都使用了依赖于随机森林分类器置信度的相同包装器相关性准则。为了应对几种类别的可用光谱数量的限制,从参考光谱的集合中生成了其他合成光谱:通过将参考光谱乘以随机系数来模拟类内变异性。最后,考虑使用rbf svm分类器达到的分类质量,对选定的波段子集进行评估。可以确定的是,有限的波段子集足以对常见的城市材料进行分类。还显示了短波红外(SWIR)光谱域(1000-2400 nm)的波段对材料分类的重要贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号